En este trabajo se estudia la dinámica de infección por VIH, a través de los procesos estocásticos de nacimiento y muerte y los sistemas de ecuaciones diferenciales que representan un sistema real. Para éste caso en específico, se describe un proceso estocástico que interpreta la dinámica de infección del VIH al interior del organismo de una persona en sus etapas iniciales de infección (post exposición o periodo de ventana); es decir, se considera que el momento mismo en que el virus ingresa en el organismo corresponde al tiempo inicial para el modelo, y a partir de entonces se tiene en cuenta el proceso de replicación y las incidencias que el virus genera cuando ataca las células T CD4+, las cuales, son pieza fundamental en el sistema inmunológico del paciente. El proceso estocástico permite deducir a partir de primeros principios, un modelo básico para la infección por VIH, similar a los estudiados en la literatura; es decir, un sistema basado en ecuaciones diferenciales ordinarias de variable estocástica, donde las variables de estado corresponden a valores esperados (promedios) y en ese sentido se encuentran también ecuaciones diferenciales para la varianza de esas variables de estado, lo que proporcionará información adicional sobre el sistema. Finalmente se presenta el estudio analítico local del modelo completo y un estudio numérico de las soluciones del sistema usando valores de los parámetros obtenidos de fuentes secundarias, con el fin de ilustrar los resultados analíticos.