This paper proposes a novel energy hub model for areas using both heat and cold demands that arise due to the major changes in environmental temperature in different periods of the year. The energy demand and the electrical price in a competitive electricity market are uncertain with stochastic values which are usually performed by a probability distribution function. Therefore, a stochastic mathematical model representing an optimal operation of energy hub is based on the objective function of minimization of energy costs (including electricity and gas). Several constraints such as energy balance, limited capacity of the transformer, air conditioners, gas boilers, absorption chillers, combined heat, and power and battery energy storage system are also incorporated into the model to guarantee the required specifications. The high-level algebraic modeling software, general algebraic modeling system has been employed to undertake calculations. Finally, numerical results have illustrated the efficiency and capability of the proposed models.