The Charged System Search (CSS) metaheuristic algorithm is introduced to the field of water resources management and applied to derive water-supply and hydro-power operating policies for a large-scale real-world reservoir system. The optimum algorithm parameters for each reservoir operation problems are also obtained via a tuning procedure. The CSS algorithm is a metaheuristic optimization method inspired by the governing laws of electrostatics in physics and motion from the Newtonian mechanics. In this study, the CSS algorithm’s performance has been tested with benchmark problems, consisting of highly non-linear constrained and/or unconstrained real-valued mathematical models, such as the Ackley’s function and Fletcher–Powell function. The CSS algorithm is then used to optimally solve the water-supply and hydropower operation of “Dez” reservoir in southern Iran over three different operation periods of 60, 240, and 480 months, and the results are presented and compared with those obtained by other available optimization approaches including Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Constrained Big Bang–Big Crunch (CBB–BC) algorithm, as well as those obtained by gradient-based Non-Linear Programming (NLP) approach. The results demonstrate the robustness and superiority of the CSS algorithm in solving long term reservoir operation problems, compared to alternative methods. The CSS algorithm is used for the first time in the field of water resources management, and proves to be a robust, accurate, and fast convergent method in handling complex problems in this filed. The application of this approach in other water management problems such as multi-reservoir operation and conjunctive surface/ground water resources management remains to be studied.