Modular construction methods, where products are manufactured beforehand in a factory and then transported to the site for installation, are becoming increasingly popular for construction projects in many countries as this method facilitates the use of the advanced technologies that support sustainability in building projects. This approach requires dual factory-site process management to be carefully coordinated and the factory module manufacturing process must therefore be managed in a detailed and quantitative manner. However, currently, the limited algorithms available to support this process are based on mathematical methodologies that do not consider the complex mix of equipment, factories, personnel, and materials involved. This paper presents three new building information modeling-based 4D simulation frameworks to manage the three elements-process, quantity, and quality-that determine the productivity of factory module manufacturing. These frameworks leverage the advantages of 4D simulation and provide more precise information than existing conventional documents. By utilizing a 4D model that facilitates the visualization of a wide range of data variables, manufacturers can plan the module manufacturing process in detail and fully understand the material, equipment, and workflow needed to accomplish the manufacturing tasks. Managers can also access information about material quantities for each process and use this information for earned value management, warehousing/storage, fabrication, and assembly planning. By having a 4D view that connects 2D drawing models, manufacturing errors and rework can be minimized and problems such as construction delays, quality lapses, and cost overruns vastly reduced.