A residue analytical method combining solid-phase microextraction (SPME) with external micellar desorption (MD) and high-performance liquid chromatography with diode array detector (HPLC-DAD) has been developed and validated for the simultaneous determination of six pharmaceutical compounds, belonging to various therapeutic categories in water samples. Target compounds include antiinflamatory drugs (ibuprofen, ketoprofen and naproxen), an analgesic (phenazone), a lipid regulator (bezafibrate) and an antiepileptic (carbamazepine). A detailed study of the experimental conditions of extraction and desorption with different surfactants was performed in order to obtain the best results during instrumental analysis. Of the different fibers and surfactants investigated, 65 microm polydimethysiloxane-divinilbenzene (PDMS-DVB) fiber and polyoxyethylene 10 lauryl ether (POLE) and polyoxyethylene 6 lauryl ether (C(12)E(6)) as desorbing agents produced the optimal response to pharmaceutical residues. Recoveries obtained were generally higher than 80% and the variability of the method was below 16% for all compounds in both surfactants. Method detection limits were 0.05-12 ng mL(-1) for POLE and 0.1-5 ng mL(-1) for C(12)E(6). The developed method was compared using external desorption with organic solvent and it was successfully applied to the determination of these pharmaceutical compounds in water samples from different origin. Solid-phase microextraction with micellar desorption (SPME-MD) represents a new approach for the extraction of different pharmaceutical compounds in natural waters because it combines shorter handling time, better efficiency, safety and more environmentally friendly process than the traditional methods.