2014 14th UK Workshop on Computational Intelligence (UKCI) 2014
DOI: 10.1109/ukci.2014.6930183
|View full text |Cite
|
Sign up to set email alerts
|

Optimized artificial neural network using differential evolution for prediction of RF power in VHF/UHF TV and GSM 900 bands for cognitive radio networks

Abstract: Abstract-Cognitive radio (CR) technology has emerged as a promising solution to many wireless communication problems including spectrum scarcity and underutilization. The knowledge of Radio Frequency (RF) power (primary signals and/ or interfering signals plus noise) in the channels to be exploited by CR is of paramount importance, not just the existence or absence of primary users. If a channel is known to be noisy, even in the absence of primary users, using such channels will demand large quantities of radi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 12 publications
0
5
0
1
Order By: Relevance
“…Para sistemas cognitivos en (Bai et al, 2014) se hace uso de una red neuronal de propagación hacia atrás para predecir el estado del espectro, y en (Kunwei et al, 2014;Bai et al, 2015) se optimiza la red neuronal con un algoritmo genético. También, en (Iliya et al, 2014) una red neuronal pronostica la potencia en las bandas de televisión y GSM900. Los ejemplos anteriores y lo descrito en (Pedraza et al, 2016b) demuestran el carácter promisorio de las redes neuronales en el pronóstico de la potencia recibida en canales inalámbricos, sobre modelos como Markov y de descomposición de modo empírico-vector de soporte para regresión.…”
Section: Modelo Neuronal Waveletunclassified
“…Para sistemas cognitivos en (Bai et al, 2014) se hace uso de una red neuronal de propagación hacia atrás para predecir el estado del espectro, y en (Kunwei et al, 2014;Bai et al, 2015) se optimiza la red neuronal con un algoritmo genético. También, en (Iliya et al, 2014) una red neuronal pronostica la potencia en las bandas de televisión y GSM900. Los ejemplos anteriores y lo descrito en (Pedraza et al, 2016b) demuestran el carácter promisorio de las redes neuronales en el pronóstico de la potencia recibida en canales inalámbricos, sobre modelos como Markov y de descomposición de modo empírico-vector de soporte para regresión.…”
Section: Modelo Neuronal Waveletunclassified
“…Reference [14] demonstrates the integration of cognitive radio capabilities, on the fly, such as the spectrum sensing of GSM bands being used by secondary users and its interaction with GSM basestations. SDR devices were also adopted in [15] to sense GSM bands in order to feed artificial neural networks able to predict real world RF power within the GSM 900 band. The main purpose of the work described in [15] is to predictively select channels with the least noise among those that were unused, improving traditional channel selection schemes proposed to GSM channels.…”
Section: A Related Workmentioning
confidence: 99%
“…For cognitive systems in [27] a backpropagation neural network is used to predict the state of the spectrum; also in [28,29] a genetic algorithm was used to optimize the neural network. In [30] a neural network was utilized to forecast the power of television and GSM-900 bands. In [31], the spectrum is modeled and forecasted using the Daubechies wavelets.…”
Section: Wavelet Neural Modelmentioning
confidence: 99%