In previous paper, "Multi-objective optimization of Passive Shock Absorber for Landing Gear", several new construction of metering pin in passive shock absorber have been proposed, and obtained optimum solutions of metering pin dimensions by multi-objective optimization. The aim of the previous paper is to solve the mass variation problem. The shock absorbers with the results of multi-objective optimization for the new metering pin constructions can be called a "semi semi-active shock absorber". In this paper, we do single-objective optimization just for simple passive shock absorbers, namely optimization at maximum or minimum masses. The aim of this paper is to evaluate the performance of simple passive shock absorbers with new construction metering pin, not as a semi semi-active shock absorber to deal with the mass variation problem. We proposed single-objective optimization method of passive shock absorber without metering pin, with single and multi-tapered metering pins, and with single and multi-parabolic metering pins. Each of these metering pin constructions have been obtained optimal solutions. Using the optimum solutions, we evaluate and compare the performance of each passive shock absorber without and with different metering pins for maximum or minimum masses. The optimization results and method are helpful in the design of landing gears for various aircrafts, especially, for design of lighter aircraft landing gears, not necessary to be considered mass vibration problem.