This study describes the application of aluminum sulfate Al2(SO4)3, boric acid H3BO3, phosphoric acid H3PO4 (Al–B–P) and amphiprotic surfactant material synthesis by the sol-gel process, which were adopted as novel precursors for wood modification. The efficacy of Al–B–P-treated wood was tested against Poria placenta and Coriolus versicolor. Untreated wood samples had higher mass losses (>40%) compared to the treated sample, which had the lowest wood mass losses (of 4%) against P. placenta and C. versicolor. To analyze the reaction mechanism of Al–B–P wood, the mechanical properties, chemical structure, crystallinity, thermal analysis, binding energy and wettability was examined by modulus of rupture (MOR), modulus of elasticity (MOE), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG) and X-ray photoelectron spectroscopy (XPS), respectively. Scanning electron microscopy- energy-dispersive X-ray spectroscopy (SEM-EDS) confirmed the wood colonization by fungi, and was used to identify the microstructures and morphologies changes that occurred in the cells during degradation by white and brown-rot fungi. At the same time, X-ray photoelectron spectroscopy (XPS) was employed to analyze the physical and chemical properties of the samples. Therefore, the study confirmed that Al–B–P and amphiprotic surfactant could replace the traditional wood preservative products, and have the potential to extend the service life of wood, particularly in soil contact and outdoor usage.