A presente pesquisa teve por objetivo desenvolver um sistema com o uso de imagens multi espectrais capturadas via VANT em diferentes espectros de cor, e classificá-las mediante técnica de aprendizagem profunda CNN, possibilitando correlacionar as imagens conforme índices de vegetação e propriedades do solo. Foi obtida uma acurácia média de 63,54% para K e 75,00% para P, destacando-se os índices CARI, MCARI_OSAVI, CHLGREEN, FE3, NORMR e MCARI para classificar K, e GEMI, MYVI, TC_YVIMSS, DATT4, FE3 e NGRDI para classificar P. Desta forma, observa-se que os métodos utilizados e dados obtidos nesta pesquisa, viabilizam o objetivo proposto, com resultados que podem auxiliar a identificação de propriedades de solo aproximadas.