Two series of thermotropic liquid-crystalline polymers (TLCPs) were synthesized by reacting various dialkoxy terephthalate units with hydroquinone (HQ) and 2,6-naphthalene diol (Naph). The dialkoxy terephthalate moieties used in this study include 2,5-diethoxyterephthalate, 2,5-dibutoxyterephthalate, and 2,5-dihexyloxy-terephthalate. All the TLCPs synthesized in this study formed nematic phases. The molecular motions according to the length of the dialkoxy side groups in the TLCPs were evaluated by 13C cross-polarization/magic angle spinning nuclear magnetic resonance spectroscopy. The thermal properties and molecular dynamics of the TLCPs are found to be affected by the length of the dialkoxy side group and the aromatic diol unit in the main chain. Further, the thermal behaviors, liquid crystalline mesophases, and degree of crystallinity of the two series of TLCPs, i.e., HQ- and Naph-TLCPs, are compared.