1990. A comparison of fuel preferences of mitochondria from vertebrates and invertebrates. Can. J. Zool. 68: 1337-1349.Knowledge of tissue-specific mitochondrial properties is important in understanding cellular aerobic energy metabolism. Studies employing isolated mitochondria offer the advantage of direct and controlled manipulation of extramitochondrial conditions, while minimizing disruption of interactions between mitochondrial enzymes, transporters, and membranes. In this review, we compare the oxidative properties of mitochondria isolated from liver, heart, and skeletal muscle of vertebrates and invertebrates. The observed differences between tissues and species in the capacities for mitochondrial oxidation of fatty acids, ketone bodies, pyruvate, and amino acids reflect fundamentally different adaptations for the assimilation, storage, and utilization of metabolic fuels. MOYES, C. D., SUAREZ, R. K., HOCHACHKA, P. W., et BALLANTYNE, J. S. 1990. A comparison of fuel preferences of mitochondria from vertebrates and invertebrates. Can. J. Zool. 68 : 1337-1349. La connaissance des propriCtCs mitochondriales spCcifiques A certains tissus est essentielle A la comprChension du mCtabolisme CnergCtique aCrobie des cellules. Les travaux sur des mitochondries isolCes offrent l'avantage d'une manipulation directe et contr61Ce des conditions extramitochondriales tout en affectant le moins possible les interactions entre les enzymes, les ClCments de transport et les membranes des mitochondries. Dans cette synthkse, nous comparons les propriCtCs oxydatives de mitochondries isolCes du foie, du coeur et du muscle squelettjque de vertCbrCs et d'invertCbrCs. Les diffkrences observCes entre divers tissus et entre diffkrentes especes quant A la capacitC mitochondriale d'oxydation des acides gras, des corps cktoniques, des pyruvates et des acides aminCs sont le reflet des adaptations fondamentalement diffkrentes qui rCgissent l'assimilation, le stockage et l'utilisation des comburants mCtaboliques. [Traduit par la revue]Introduction may provide models that are better suited for the study of Cellular energy production via the oxidation of glucose, fatty acids, ketone bodies, and amino acids requires participation of rnitachondrial transporters, rnitochondrial matrix and membranebound enzymes, and oxidative phosphorylation. Consequently, studies of metabolite oxidation by isolated mitochondria provide insights into the fuel preferences of various tissues. Because studies that make use of isolated mitochondria minimize disruption of enzyme-enzyme, enzyme-membrane, and enzyme-transporter interactions, they are useful in assessing transport capacities, metabolic flux rates, enzyme activities in situ, and regulation of mitochondrial pathways. Such studies may also yield important information about anabolic capacities,