-Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake [tracer-determined disappearance rate (R d), control 41.2 Ϯ 1.7 vs. HG 32.4 Ϯ 1.9 mg ⅐ kg Ϫ1 ⅐ min Ϫ1 , P Ͻ 0.05], which was prevented by NAC (HG ϩ NAC 45.9 Ϯ 3.5 mg ⅐ kg Ϫ1 ⅐ min Ϫ1 ). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance. euglycemic clamp; insulin resistance; protein carbonyls; protein kinase C; antioxidants INSULIN RESISTANCE is one of the earliest detectable predictors of type 2 diabetes (47, 51, 39) and, along with relative insulin deficiency (39, 56), strongly contributes to the development of overt hyperglycemia. Hyperglycemia is in large part responsible for a host of complications found in diabetic subjects (15,83,86) and can worsen insulin resistance (11,38,72,73,75). The effect of hyperglycemia per se to induce insulin resistance in vivo was first demonstrated by Rossetti et al. (75) in the partially pancreatectomized rat model, which is characterized by moderate fasting hyperglycemia, glucose intolerance, and normal fasting insulin levels. In that study, phlorizin was used to normalize plasma glucose without affecting insulin secretion. Use of a hyperinsulinemic-euglycemic clamp revealed that the decreased insulin-stimulated glucose utilization was completely normalized in the phlorizin-treated rats, indicating a direct role of glucose in the induction of insulin resistance. Several mechanisms have been proposed to mediate hyperglycemia-induced insulin resistance, including the hexosamine biosynthetic pathway (4,31,67,74,87) and protein kinase C (55,68,78