Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2 −/− mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold-or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROSmediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.aging | mouse | homeostasis | β-adrenergic signaling A lthough reactive oxygen species (ROS) are normal products of cellular metabolism, excessive accumulation of ROS resulting from nutritional imbalance and/or environmental stresses can provoke oxidative damage of diverse cellular macromolecules, such as DNA, RNA, and proteins (1). Accumulation of ROS has been associated with diverse degenerative diseases, such as cancer, neurodegeneration, and obesity-associated metabolic syndrome (2-4). To minimize detrimental consequences of ROS accumulation, cells are equipped with various antioxidant proteins, including superoxide dismutases, catalases, peroxiredoxins, and sestrins (5-7). Several ROS-scavenging chemicals or dietary supplements, such as butylated hydroxyanisole (BHA), N-acetylcysteine (NAC), and antioxidant vitamins, can assist with eliminating excessive amounts of ROS (8-10) and were once considered to be potential inhibitors of degenerative diseases associated with aging and obesity (11-13). However, most animal and human clinical studies failed to demonstrate the benefits of dietary antioxidants in restoring metabolic homeostasis or in promoting health and lifespan (13,14).Uncoupling protein 1 (Ucp1) is an anion-carrier protein located in the inner membrane of the mitochondria. By dissipatin...