Luminous X-ray stars are very often found in visual double or multiple stars. Binaries with periods of a few days possess the highest degree of coronal X-ray activity among regular, non-relativistic stars because of their fast, tidally driven rotation. But the orbital periods in visual double stars are too large for any direct interaction between the companions to take place. We suggest that most of the strongest X-ray components in resolved binaries are yetundiscovered short-period binaries, and that a few are merged remnants of such binaries. The omnipresence of shortperiod active stars, e.g., of BY-Dra-type binaries, in multiple systems is explained via the dynamical evolution of triple stars with large mutual inclinations. The dynamical perturbation on the inner pair pumps up the eccentricity in a cyclic manner, a phenomenon known as Kozai cycling. At times of close periapsis, tidal friction reduces the angular momentum of the binary, causing it to shrink. When the orbital period of the inner pair drops to a few days, fast surface rotation of the companions is driven by tidal forces, boosting activity by a few orders of magnitude. If the period drops still further, a merger may take place leaving a rapidly rotating active dwarf with only a distant companion.