2018
DOI: 10.1002/qre.2276
|View full text |Cite
|
Sign up to set email alerts
|

Parameter estimation for bivariate Weibull distribution using generalized moment method for reliability evaluation

Abstract: Bivariate Weibull distribution can address the life of a system exhibiting 2‐dimensional characteristics in risk and reliability engineering. The applicability of bivariate Weibull distribution has been hindered by its difficulty with parameter estimation, as the number of parameters in bivariate Weibull distribution is more than those in univariate Weibull distribution. Considering a particular structure of a bivariate Weibull distribution model, this paper proposes a generalized moment method (GMM) for param… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
9
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 11 publications
(9 citation statements)
references
References 28 publications
0
9
0
Order By: Relevance
“…According to large sample theory for independent and identical data, if E()||XkYl<, then n()trueμ^bold-italicμN()bold0,normalΣ . Yuan sets Σij=cov()μi,μj and claims that nbold-italicθ^θN0,GΣboldG. This is incorrect. Actually, Σ=varfalse(Xfalse)cov()X,X2covfalse(X,Yfalse)cov()X,Y2covfalse(X,XYfalse)cov()X2,Xvar()X2cov()X2,Ycov()X2,Y2cov()X2,XYcovfalse(Y,Xfalse)cov()Y,X2varfalse(Yfalse)cov()Y,Y2covfalse(Y,XYfalse)cov()Y2,X…”
Section: Corrected Confidence Intervalsmentioning
confidence: 99%
See 4 more Smart Citations
“…According to large sample theory for independent and identical data, if E()||XkYl<, then n()trueμ^bold-italicμN()bold0,normalΣ . Yuan sets Σij=cov()μi,μj and claims that nbold-italicθ^θN0,GΣboldG. This is incorrect. Actually, Σ=varfalse(Xfalse)cov()X,X2covfalse(X,Yfalse)cov()X,Y2covfalse(X,XYfalse)cov()X2,Xvar()X2cov()X2,Ycov()X2,Y2cov()X2,XYcovfalse(Y,Xfalse)cov()Y,X2varfalse(Yfalse)cov()Y,Y2covfalse(Y,XYfalse)cov()Y2,X…”
Section: Corrected Confidence Intervalsmentioning
confidence: 99%
“…After some calculations, the confidence interval for θ i reported in Yuan is as follows: []θL,θU=[]trueθ^iz1α2Vi,in,trueθ^i+z1α2Vi,in. …”
Section: Corrected Confidence Intervalsmentioning
confidence: 99%
See 3 more Smart Citations