Maintenance of tissue integrity in skeletal muscle requires the immunomodulatory and regenerative functions of muscle-resident regulatory T cells (Tregs). Chronic skeletal muscle infections, such as with Toxoplasma gondii disrupt normal immuno-regulatory networks and lead to pathogenic changes in Treg function. Specifically, Tregs during chronic T. gondii infection reinforce an inflammatory macrophage bias that exacerbates injury in skeletal muscle. In this study, we investigated whether the aberrations in skeletal muscle Treg function during chronic infection could be overcome by treatment with Treg-related factors associated with enhanced muscle regeneration during sterile injury. We show treatment of chronically infected mice with the Treg promoting therapies, interleukin-2 complexed with anti-IL-2 antibody or interleukin-33 (IL-33), did not restore macrophage dynamics or muscle function, respectively, in vivo. However supplementation of known Treg-derived factors, interleukin-10 (IL-10) and amphiregulin (Areg) improved muscle function and skewed macrophages toward a restorative phenotype in the presence of chronic infection. These shifts in macrophage phenotype are coupled with enhanced physiologic parameters of regeneration. Together, these data suggest that while Treg-mediated immuno-regulation is compromised during chronic skeletal muscle infection, supplementation of canonical Treg-derived factors such as IL-10 and Areg can restore immunologic balance and enhance muscle repair.