2019
DOI: 10.3390/w11061288
|View full text |Cite
|
Sign up to set email alerts
|

Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins

Abstract: The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, the high number of variables that can be relevant and can change significantly in space and, in the other hand, the low availability of most of them in practical engineering. Therefore, this research proposes to modify the original equation of the classical degree-day model to introduce the spatial … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 57 publications
0
2
0
1
Order By: Relevance
“…Hydrological modeling was conducted using the TETIS model (see [45,46] for more information about the TETIS model) and daily flow data were measured at the Las Adjuntas gauge, which is located at the mouth of the sub-basin (Figure 3). The flow data measured can be freely downloaded from the website of CONAGUA National Data Bank of Surface Waters (https://www.imta.gob.mx/bandas accessed on 8 February 2023).…”
Section: Case Studymentioning
confidence: 99%
See 1 more Smart Citation
“…Hydrological modeling was conducted using the TETIS model (see [45,46] for more information about the TETIS model) and daily flow data were measured at the Las Adjuntas gauge, which is located at the mouth of the sub-basin (Figure 3). The flow data measured can be freely downloaded from the website of CONAGUA National Data Bank of Surface Waters (https://www.imta.gob.mx/bandas accessed on 8 February 2023).…”
Section: Case Studymentioning
confidence: 99%
“…The NSE serves as the objective function of the hydrological model calibration [47] as it normalizes the model performance into an interpretable scale [48]. Table 2 presents the average of the effective parameters resulting from the calibration process [45,46,49]. In terms of efficiency, Figure 4a shows that the model reaches a NSE of 0.70 for the calibration period.…”
Section: Hydrology Model Performancementioning
confidence: 99%
“…Los nueve parámetros son: almacenamiento estático, índice de cobertura vegetal, capacidad de infiltración, velocidad de la escorrentía directa, capacidad de percolación, interflujo, flujo subterráneo profundo, flujo base y velocidad en la red fluvial (Orozco, Martínez & Ortega, 2020). Estos nueve parámetros han sido calibrados de forma manual y automática a través de factores correctores (FC) (Orozco, Francés & Mora, 2019;Orozco, Ramírez & Francés, 2018;Orozco et al, 2020). La calibración automática se ha realizado usando el algoritmo de optimización Shuffled Complex Evolution de la Universidad de Arizona (SCE-UA) propuesto por Duan, Sorooshian & Gupta (1992), y se ha empleado como función objetivo el índice de eficiencia de Nash-Sutcliffe (NSE, por sus siglas en inglés), el cual es el más usado en la calibración de modelos hidrológicos y emplea la ecuación siguiente:…”
Section: Calibración De Los Modelosunclassified