Background and Purpose
Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen‐derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections.
Experimental Approach
The effects of NEU inhibitors on lipopolysaccharide (LPS)‐stimulated neutrophils from healthy donors or COVID‐19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re‐analysis of single‐cell RNA sequencing of respiratory tract samples from COVID‐19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus‐induced acute lung injury were evaluated in murine models.
Key Results
Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS‐activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP‐9). Inhibition of MMP‐9 prevented LPS‐induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine‐tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID‐19 patients, and treatment of whole‐blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV‐3) decreased lung neutrophil infiltration, viral load, and tissue damage.
Conclusion and Implications
These findings suggest that interplay of NEU1–MMP‐9 induces neutrophil overactivation. In vivo, NEU may serve as a host‐directed target to dampen neutrophil dysfunction during severe infections.