Background and Objective:The clinical outcomes of guided tissue regeneration (GTR) or guided bone regeneration (GBR) procedures can be impaired if a bacterial infection develops at the surgical site. Membrane exposure is one of the causes of the onset of bacterial infection. Previously, we have fabricated a poly(lactic acid/caprolactone) (PLCL) bilayer membrane composed of a porous layer and a compact layer.The compact layer acts as a barrier against connective tissue and epithelial cells, and we hypothesized that it could also be an effective barrier against bacterial cells. The objective of this study was to evaluate the ability of the PLCL bilayer membrane to block bacterial cell penetration, which would be useful for preventing postoperative infections.Methods: Porphyromonas gingivalis, Streptococcus mutans, and multispecies bacteria collected from human saliva were used in this study. Bacteria were seeded directly on the compact layer of a PLCL bilayer membrane, and bacterial adhesion to the membrane, as well as penetration into the membrane's structure, were assessed.Bacterial adhesion was evaluated by the number of colonies formed at 6, 24, and 72 h, and penetration was observed using a scanning electron microscope at 24 and 72 h.Commercially available membranes, composed of poly(lactic-co-glycolic acid) or type I collagen, were used as controls.Results: P. gingivalis, S. mutans, and the multispecies bacteria obtained from human saliva adhered onto all the membranes after only 6 h of incubation. However, fewer adherent cells were observed for the PLCL bilayer membrane compared with the controls for all experimental periods. The PLCL membrane was capable of blocking bacterial penetration, and no bacterial cells were observed in the structure. In contrast, bacteria penetrated both the control membranes and were observed at depths of up to 80 µm after 72 h of incubation.
Conclusion: Membrane characteristics may influence how bacterial colonizationoccurs. The PLCL membrane had reduced bacterial adhesion and blocked bacterial penetration, and these characteristics could contribute to a favorable outcome for regenerative treatments. In the event of membrane exposure at GTR/GBR surgical sites,