Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment.
BackgroundCarrageenan is a linear sulphated polysaccharide extracted from red seaweed of the Rhodophyceae family. It has broad spectrum of applications in biomedical and biopharmaceutical field. In this study, we determined the cytotoxicity of degraded and undegraded carrageenan in human intestine (Caco-2; cancer and FHs 74 Int; normal) and liver (HepG2; cancer and Fa2N-4; normal) cell lines.MethodsFood grade k-carrageenan (FGKC), dried sheet k-carrageenan (DKC), commercial grade k-carrageenan (CGKC), food grade i-carrageenan (FGIC) and commercial grade i-carrageenan (CGIC) were dissolved in hydrochloric acid and water to prepare degraded and undegraded carrageenan, respectively. Carrageenan at the concentration range of 62.5 – 2000.0 μg mL−1 was used in the study. MTT assay was used to determine the cell viability while the mode of cell death was determined by May-Grunwald Giemsa (MGG) staining, acridine orange-ethidium bromide (AO/EtBr) staining, agarose gel electrophoresis and gene expression analysis.ResultsDegraded FGKC, DKC and CGKC showed IC50 in 24, 48 and 72 hours treated Caco-2, FHs 74 Int, HepG2 and Fa2N-4 cell lines as tested by MTT assay. Degraded FGIC and CGIC only showed its toxicity in Fa2N-4 cells. The characteristics of apoptosis were demonstrated in degraded k-carrageenan treated Caco-2, FHs 74 Int, HepG2 and Fa2N-4 cells after MGG staining. When Caco-2 and HepG2 cells were undergone AO/EtBr staining, chromatin condensation and nuclear fragmentation were clearly seen under the microscope. However, DNA ladder was only found in HepG2 cells after gel electrophoresis analysis. Degraded k-carrageenan also inactivated PCNA, Ki-67 and survivin gene in HepG2. On the other hand, undegraded FGKC, DKC, CGKC, FGIC and CGIC treated cells showed no cytotoxic effect after analyzed by the same analyses as in degraded carrageenan.ConclusionDegraded k-carrageenan inhibited cell proliferation in Caco-2, FHs 74 Int, HepG2 and Fa2N-4 cell lines and the anti-proliferative effect was related to apoptosis together with inactivation of cell proliferating genes as determined by morphological observation and molecular analysis. However, no cytotoxic effect was found in undegraded carrageenan towards normal and cancer intestine and liver cell lines.
Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption.
Background: Piper sarmentosum, locally known as kaduk is belonging to the family of Piperaceae. It is our interest to evaluate their effect on human hepatoma cell line (HepG2) for the potential of anticarcinogenic activity.
Purpose. This study is aimed to compare the effects of two different orthodontic forces on crevicular alkaline phosphatase activity, rate of tooth movement, and root resorption. Materials and Methods. Twelve female subjects of class II division 1 malocclusion participated. Maxillary canines with bonded fixed appliances acted as the tested teeth, while their antagonists with no appliances acted as the controls. Canine retraction was performed using nickel titanium coil spring that delivered forces of 100 gm or 150 gm to either side. Crevicular fluid was analyzed for ALP activity, and study models were casted to measure tooth movements. Root resorption was assessed using periapical radiographs before and after the force application. Results. ALP activity at the mesial sites peaked at week 1 for 150 gm group with significant differences when compared with the 100 gm group. Cumulative canine movements were significantly greater in the 150 gm force (2.10 ± 0.50 mm) than in the 100 gm force (1.57 ± 0.44 mm). No root resorption was in the maxillary canines after retraction. Conclusions. A force of 150 gm produced faster tooth movements and higher ALP activity compared with the 100 gm group and had no detrimental effects such as root resorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.