Chemical neurotransmission has been the subject of intensive investigations in recent years. Acetylcholine is an essential neurotransmitter in the central nervous system as it has an effect on alertness, memory and learning. Enzymatic hydrolysis of acetylcholine in the synaptic cleft is fast and quickly metabolizes to choline and acetate by acetylcholinesterase. Hence the concentration in the extracellular fluid of the brain is low (0.1-6 nm). Techniques such as microdialysis are routinely employed to measure acetylcholine levels in living brain systems and the microdialysis sample volumes are usually less than 50 microL. In order to develop medicine for the diseases associated with cognitive dysfunction like mild cognitive impairment, Alzheimer's disease, schizophrenia and Parkinson's disease, or to study the mechanism of the illness, it is important to measure the concentration of acetylcholine in the extracellular fluid of the brain. Recently considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate quantification of acetylcholine collected from in-vivo brain microdialysis experiments. This review will provide a brief overview of acetylcholine biosynthesis, microdialysis technique and liquid chromatography mass spectrometry, which is being used to quantitate extracellular levels of acetylcholine.