2021
DOI: 10.3390/ijms221910455
|View full text |Cite
|
Sign up to set email alerts
|

PDF1.5 Enhances Adaptation to Low Nitrogen Levels and Cadmium Stress

Abstract: Environmental acclimation ability plays a key role in plant growth, although the mechanism remains unclear. Here, we determined the involvement of Arabidopsis thaliana PLANT DEFENSIN 1 gene AtPDF1.5 in the adaptation to low nitrogen (LN) levels and cadmium (Cd) stress. Histochemical analysis revealed that AtPDF1.5 was mainly expressed in the nodes and carpopodium and was significantly induced in plants exposed to LN conditions and Cd stress. Subcellular localization analysis revealed that AtPDF1.5 was cell wal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(1 citation statement)
references
References 68 publications
0
1
0
Order By: Relevance
“…The PDF1.5 is located in the cell wall and may detoxify Cd by chelating Cd to the cell wall [61]. PDF has a characteristic three-dimensional folding pattern, which is stabilized by eight disulfide bonds between cysteines [72]. Cysteine and other key residues are necessary to induce changes in the three-dimensional structure of AtPDF, which can mediate and increase yeast tolerance to Cd [73].…”
Section: A Brief Introduction To the Pdf Family Key Proteins And Chel...mentioning
confidence: 99%
“…The PDF1.5 is located in the cell wall and may detoxify Cd by chelating Cd to the cell wall [61]. PDF has a characteristic three-dimensional folding pattern, which is stabilized by eight disulfide bonds between cysteines [72]. Cysteine and other key residues are necessary to induce changes in the three-dimensional structure of AtPDF, which can mediate and increase yeast tolerance to Cd [73].…”
Section: A Brief Introduction To the Pdf Family Key Proteins And Chel...mentioning
confidence: 99%