Environmental acclimation ability plays a key role in plant growth, although the mechanism remains unclear. Here, we determined the involvement of Arabidopsis thaliana PLANT DEFENSIN 1 gene AtPDF1.5 in the adaptation to low nitrogen (LN) levels and cadmium (Cd) stress. Histochemical analysis revealed that AtPDF1.5 was mainly expressed in the nodes and carpopodium and was significantly induced in plants exposed to LN conditions and Cd stress. Subcellular localization analysis revealed that AtPDF1.5 was cell wall- and cytoplasm-localized. AtPDF1.5 overexpression significantly enhanced adaptation to LN and Cd stress and enhanced the distribution of metallic elements. The functional disruption of AtPDF1.5 reduced adaptations to LN and Cd stress and impaired metal distribution. Under LN conditions, the nitrate transporter AtNRT1.5 expression was upregulated. Nitrate transporter AtNRT1.8 expression was downregulated when AtPDF1.5 was overexpressed, resulting in enhanced transport of NO3− to shoots. In response to Cd treatment, AtPDF1.5 regulated the expression of metal transporter genes AtHMP07, AtNRAMP4, AtNRAMP1, and AtHIPP3, resulting in higher Cd accumulation in the shoots. We conclude that AtPDF1.5 is involved in the processing or transmission of signal substances and plays an important role in the remediation of Cd pollution and LN adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.