2016
DOI: 10.26555/jifo.v10i1.a3352
|View full text |Cite
|
Sign up to set email alerts
|

Pengenalan Pola Karakter Plat Nomor Kendaraan Menggunakan Algoritma Momentum Backpropagation Neural Network

Abstract: Abstrak Peningkatan jumlah kendaraan bermotor yang terus terjadi di PENDAHULUANJumlah kendaraan di Indonesia, terutama di kota-kota besar, terus mengalami kenaikan yang signifikan tiap tahunnya. Berdasarkan data milik Korps Lalu Lintas Kepolisian Negara Indonesia yang dikutip oleh situs surat kabar Kompas, pada tahun 2013jumlah kendaraan di Indonesia mencapai 104.211.000 unit, atau meningkat sebesar 11% dibandingkan dengan tahun sebelumnya. Besarnya peningkatan jumlah kendaraan ini ikut memberikan dampak pada … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
14

Year Published

2017
2017
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 16 publications
(21 citation statements)
references
References 7 publications
0
7
0
14
Order By: Relevance
“…[25] and [26] use the method of erosion and opening, while [5] use Closing method followed by an Opening method. Also, there are several other researchers such as [27], [6], [19] and [11] using morphologies methods.…”
Section: Morphology and Connected Component Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…[25] and [26] use the method of erosion and opening, while [5] use Closing method followed by an Opening method. Also, there are several other researchers such as [27], [6], [19] and [11] using morphologies methods.…”
Section: Morphology and Connected Component Analysismentioning
confidence: 99%
“…The Peak Signal to Noise Ratio method is used to find the difference or error between the original image and the image that the screening process has performed. This method is used by [19] and [20]. Images are filtered and measured using Mean Squared Error (MSE) and PSNR.…”
Section: Peak Signal To Noise Ratio and Connected Component Analysismentioning
confidence: 99%
“…Pembacaan citra pelat nomor dalam penelitian tersebut di atas menggunakan teknik OCR. Beberapa algoritma diterapkan dalam pengenalan OCR ini, antara lain template matching [14], [15] dan jaringan syaraf tiruan [16], [17].…”
Section: Pendahuluanunclassified
“…Hasil ini adalah seperti sistem pembaca citra secara real-time dan online di penelitian [10]- [13], yang berkisar antara 60-80%. Pengujian secara off-line menggunakan algoritma template matching di [15] menghasilkan akurasi 85% dan dengan jaringan syaraf tiruan di penelitian [16] dan [17] menghasilkan akurasi yang lebih baik, yaitu 90% dan 97,1 %. Perbaikan algoritma pengenalan citra dalam sistem dapat dilakukan menggunakan jaringan syaraf tiruan.…”
Section: Gambar 21 Flowgraph Fungsi Led(stat)unclassified
“…, (Nugroho, 2012), (Avianto, 2016), (Bahtiar, 2016), (Haryoko & Pramono, 2016) NN Backpropagation 2 (Iswanto, Usman, & Novamizanti, 2010) PNN and K-Nearest Neighbor (KNN) 3 (Mellolo, 2012) Kohonen neural Network 4 (Aryo Michael, 2016), (Dharu, 2015), (Putra, 2017), (Gumelar, Fibriani, Setiabudi, & Supeno, 2016), (Widianto, Wijaya, & Windasari, 2017), (Ruslianto & Harjoko, 2011), (Sihombing, Nugroho, & Wibirama, 2015) Template Matching 5 (Relung Satria D, Isnanto, & Zahra, 2014), (Sari, 2011), (Lahmurahma, 2013) K-nearest neighbor (KNN) 6 (Syawaluddin. Mochammad Taufik, Tjokorda Agung Budi Wirayuda, 2010), (Wong, Hardy, & Maulana, 2013), (Wicaksana, 2011) Learning Vector Quantization (LVQ) 7 (Taufiq, Hidayatno, & Isnanto, 2012), (Udayana & Darmawiguna, 2016), (Prasetia & Harinitha, 2014), (Elisya, Rahayani, & Diono, 2016), (Setiadi, 2007) Tesseract OCR 8 (Hariyani, Usman, & Mursita, 2010) JST Self Organizing Map (SOM) 9 (Yulida, Kusumawardhan, & Setijono, 2013) '1', '2', '3', '4' , '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E' , 'F', 'G', 'H', 'I', 'J' , 'K', 'L', 'M', '…”
mentioning
confidence: 99%