The combination of bottom-up controllable self-assembly technique with bioinspired design has opened new horizons in the development of self-propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self-propelled micro/nanomotors has been witnessed based on the controlled self-assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function. The construction, propulsion mechanism, and movement control of synthetic micro/nanomotors in connection with controlled self-assembly in recent research activities are summarized. These assembled nanomotors are expected to have a tremendous impact on current artificial nanomachines in future and hold potential promise for biomedical applications including drug targeted delivery, photothermal cancer therapy, biodetoxification, treatment of atherosclerosis, artificial insemination, crushing kidney stones, cleaning wounds, and removing blood clots and parasites.