The purpose of this study was to characterize mineral trioxide aggregates (MTA) enriched with iron disulfide (FeS ) nanostructures at different concentrations, and to investigate their storage modulus, radiopacity, setting time, pH, cytotoxicity, and antimicrobial activity. Iron disulfide nanostructures [with particle size of 0.357 ± 0.156 μm (mean ± SD)] at weight ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 wt% were added to white MTA (wMTA). The radiopacity, rheological properties, setting time, and pH, as well as the cytotoxicity (assessed using the MTT assay) and antibacterial activity (assessed using the broth microdilution test) were determined for MTA/FeS nanostructures. The nanostructures did not modify the radiopacity values of wMTA (~6 mm of aluminium); however, they reduced the setting time from 18.2 ± 3.20 min to 13.7 ± 1.8 min, and the storage modulus was indicative of a good stiffness. Whereas the wMTA/FeS nanostructures did not induce cytotoxicity when in contact with human pulp cells (HPCs) and human gingival fibroblasts (HGFs), they showed bacteriostatic activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis. Adding FeS nanostructures to MTA might be an option for improving the root canal sealing and antibacterial effects of wMTA in endodontic treatments.