In this paper, a simulation study is carried out for a multi-channel gate all around (GAA) MOSFET with channel separation calculation. The simulation is performed in lower technology nodes by taking the quantum effect into consideration. The insulator used in this model is a high-k dielectric, which allows the device to be scaled down. The separation between the silicon channel and its effect on device performance is investigated extensively. The performance thus obtained is compared with different channel separations in terms of drain current (ID), threshold voltage (Vth), transconductance (gm) and switching ratio (Ion/Ioff). Further, the leakage current and associated short channel effect such as subthreshold swing (SS) and its dependence on channel separation are studied in detail. An improved value of on-current of 28.9 % along with SS of 70.34 mV/dec is achieved for a separation of 10 nm. However, a switching ratio of 9.13e+08 is obtained for a separation of 6 nm which is comparatively higher than 9 and 10 nm separation.