Despite the great promise of integrated positron emission tomography (PET)/magnetic resonance (MR) imaging to add molecular information to anatomical and functional MR, its potential impact in medicine is diminished by a very high cost, limiting its dissemination. An RF-penetrable PET ring that can be inserted into any existing MR system has been developed to address this issue. Employing optical signal transmission along with battery power enables the PET ring insert to electrically float with respect to the MR system. Then, inter-modular gaps of the PET ring allow the RF transmit field from the standard built-in body coil to penetrate into the PET fields-of-view (FOV) with some attenuation that can be compensated for. MR performance, including RF noise, magnetic susceptibility, RF penetrability through and $B_{1}$ uniformity within the PET insert, and MR image quality, were analyzed with and without the PET ring present. The simulated and experimentally measured RF field attenuation factors with the PET ring present were -2.7 and -3.2 dB, respectively. The magnetic susceptibility effect (0.063 ppm) and noise emitted from the PET ring in the MR receive channel were insignificant. $B_{1}$ homogeneity of a spherical agar phantom within the PET ring FOV dropped by 8.4% and MR image SNR was reduced by 3.5 and 4.3 dB with the PET present for gradient-recalled echo and fast-spin echo, respectively. This paper demonstrates, for the first time, an RF-penetrable PET insert comprising a full ring of operating detectors that achieves simultaneous PET/MR using the standard built-in body coil as the RF transmitter.