Lithium-Ion (Li-ion) battery is essential in today's energy systems and electric vehicles (EVs). Although Li-ion battery can be charged quickly and have a high energy density, it has several drawbacks, including the rapid degradation of battery performance, especially in terms of battery capacity. Therefore, evaluating its performance degradation is necessary to understand its characteristics. In this paper, the performance degradation of a Li-ion battery is monitored and evaluated from multiple SoC measurements. A simple and low-cost experimental setup consisting of sensors, a microcontroller, and a PC is developed to measure and record the real-time data of Li-ion battery voltage and current. Then, the battery state of charge (SoC) is determined using the Coulomb Counting method, which is based on the incoming and outgoing currents of the battery. As a result, this study derives three parameters that indicate the performance degradation of a Li-ion battery, i.e., SoC, battery capacity, and discharge time. From multiple direct measurements with constant load and C20 discharge process, the minimum SoC value increases from 11% to 18%, while battery capacity decreases from 8.8Ah to 8.3 Ah and, discharge time decreases from 16.9 hours to 16.4 hours. All of those parameters indicate a degradation of around 7% in battery performance. Therefore, this research paves the way for finding a solution to mitigate the quick performance degradation of Li-ion batteries.