In the present research work, the effect of abrasive water jet (AWJ) machining parameters such as jet operating pressure, feed rate, standoff distance (SOD), and concentration of abrasive on kerf width produced on graphite filled glass fiber reinforced epoxy composite is investigated. Experiments were conducted based on Taguchi's L 27 orthogonal arrays and the process parameters were optimized to obtain small kerf. The main as well as interaction effects of the process parameters were analyzed using the analysis of variance (ANOVA) and regression models were developed to predict kerf width. The results show that the operating pressure, the SOD, and the feed rate are found to be significantly affecting the top kerf width and their contribution to kerf width is 24.72%, 12.38%, and 52.16%, respectively. Further, morphological study is made using scanning electron microscope (SEM) on the samples that were machined at optimized process parameters. It was observed that AWJ machined surfaces were free from delamination at optimized process parameters.