The conditions that precede the onset of autonomous oscillations in continuous yeast cultures were studied in three different types of experiments. It was found that the final state of the culture depended on the protocol used to start up the reactor. Batch cultures, switched to continuous operation at different stages of the batch growth curve, all exhibited similar dynamics-ethanol depletion followed by autonomous oscillations. Small perturbations of the distribution of states in the reactor, achieved by addition of externally grown cells, were able to quench the oscillatory dynamics. Reaching the desired operating point by slow dilution rate changes gave rise to different final states, two oscillatory states and one steady state, depending on the rate of change in dilution rate. The multiplicity of stable states at a single operating point is not explained by any current distributed model and points toward a segregated mechanism of these oscillations.