Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival.he bacterium Pseudomonas aeruginosa is a ubiquitous organism that is a known opportunistic pathogen, causing both chronic and acute infections in susceptible populations, including individuals with cystic fibrosis or burn wounds, or Intensive Care Unit patients (1). Among questions that remain unanswered for nonobligate pathogens like P. aeruginosa is how these bacteria initiate infections after entering the host from the environment. Given that P. aeruginosa is among many bacteria that grow as a biofilm during infection, there is a need to understand how individual cells coordinate in space with each other to colonize new surfaces and subsequently transition to stationary biofilms.Many organisms coordinate their movement as a population, emerging as self-organized swarming groups. Even the untrained eye would note the coordinated swarming behavior of fish, birds, and insects. Many bacteria also exhibit collective motion by swarming over surfaces in a coordinated manner to move unimpeded at the same time (2-4). Our knowledge of the specific actions used by individual cells during collective motion is limited; the behavior of single cells within a dense population is difficult to discern experimentally. Previous attempts to study bacterial collective behavior have used computational models to test mechanisms hypothesized to influence collective motion, including directional r...