Given a smooth function U (t, x), T -periodic in the first variable and satisfying U (t, x) = O(|x| α ) for some α ∈ (0, 2) as |x| → ∞, we prove that the forced Kepler problemẍhas a generalized T -periodic solution, according to the definition given in the paper [Boscaggin, Ortega, Zhao, Periodic solutions and regularization of a Kepler problem with time-dependent perturbation, Trans. Amer. Math. Soc, 2018]. The proof relies on variational arguments. Projects Dinamiche complesse per il problema degli N -centri and Proprietà qualitative di alcuni problemi ai limiti and by the project PRID SiDiA Sistemi Dinamici e Applicazioni of the DMIF -Università di Udine.