The functional properties of airway smooth muscle are fundamental to the properties of the airways in vivo. However, many of the distinctive characteristics of smooth muscle are not easily accounted for on the basis of molecular models developed to account for the properties of striated muscles. The specialized ultrastructural features and regulatory mechanisms present in smooth muscle are likely to form the basis for many of its characteristic properties.The molecular organization and structure of the contractile apparatus in smooth muscle is consistent with a model of force generation based on the relative sliding of adjacent actin and myosin filaments. In airway smooth muscle, actomyosin activation is initiated by the phosphorylation of the 20 kDa light chain of myosin; but there is conflicting evidence regarding the role of myosin light chain phosphorylation in tension maintenance. Tension generated by the contractile filaments is transmitted throughout the cell via a network of actin filaments anchored at dense plaques at the cell membrane, where force is transmitted to the extracellular matrix via transmembrane integrins. Proteins bound to actin and/or localized to actin filament anchorage sites may participate in regulating the shape of the smooth muscle cell and the organization of its contractile filament system. These proteins may also participate in signalling pathways that regulate the crossbridge activation and other functions of the actin cytoskeleton.The length-dependence of active force and the mechanical plasticity of airway smooth muscle may play an important role in determining airway responsiveness during lung volume changes in vivo. The molecular basis for the length-dependence of tension in smooth muscle differs from that in skeletal muscle, and may involve mechano-transduction mechanisms that modulate contractile filament activation and cytoskeletal organization in response to changes in muscle length. The reorganization of contractile filaments may also underlie the plasticity of the mechanical response of airway smooth muscle. Changes in the structural organization and signalling pathways of airway smooth muscle cells resulting form alterations in mechanical forces in the lung may be important factors in the development of pathophysiological conditions of chronic airway hyperresponsiveness. Eur Respir J 2000; 15: 600±616. The mechanical properties of airway smooth muscle are fundamental to the regulation of airway contractility and airway tone in vivo. These mechanical properties have traditionally been interpreted in terms of the "sliding filament model" of muscle contraction first proposed by HUXLEY and NIEDERGERKE [1] and HUXLEY and HANSON [2] to explain the contractile behaviour of skeletal muscle. Like other smooth muscles, airway smooth muscle exhibits the same hyperbolic force-velocity relationship that is characteristic of striated muscles, and the lengthtension relationship is also qualitatively similar to that of striated muscles [3]. The qualitative similarities be...