We report theoretical and experimental evidence of chaotic pulses with excitable-like properties in an opto-radiofrequency oscillator based on a self-injected dual-frequency laser. The chaotic attractor involved in the dynamics produces pulses that, albeit chaotic, are quite regular: They all have similar amplitudes, and are almost periodic in time. Thanks to these features, the system displays properties that are similar to those of excitable systems. In particular, the pulses exhibit a threshold-like response, of well-defined amplitude, to perturbations, and it appears possible to define a refractory time. At variance with excitability in injected lasers, here the excitable-like pulses are not accompanied by phase slips.