Cavitands and capsules define nanoliter spaces for recognition, isolation and reactions of small molecules. These systems are usually self-assembled and factors such as solvent size, stoichiometry, and packing factors determine what goes into the spaces. Here we examine two switching devices to control what and when guests get in and out of these hosts: bipyridyl-metal chelation and azobenzene photoisomerization. The effects are reversible by treatment with conventional chelating agents and brief heating, respectively. Accordingly, it is possible to trigger reactions that take place within a cylindrical capsule by light, even though the reaction process is not photochemical by nature. Likewise the presence of metals can regulate reactions without acting as direct catalysts.