We implement a multi-color laser engine with silicon nitride photonic integrated circuit technology, that combines four fluorophore excitation wavelengths (405 nm, 488 nm, 561 nm, 640 nm) and splits them with variable attenuation among two output fibers used for different microscope imaging modalities. With the help of photonic integrated circuit technology, the volume of the multi-color laser engine’s optics is reduced by two orders of magnitude compared to its commercially available discrete optics counterpart. Light multiplexing is implemented by means of a directional coupler based device and variable optical attenuation as well as fiber switching with thermally actuated Mach-Zehnder interferometers. Total insertion losses from lasers to output fibers are in the order of 6 dB at 488 nm, 561 nm, and 640 nm. Higher insertion losses at 405 nm can be further improved on. In addition to the system level results, spectrally resolved performance has been characterized for each of the developed devices.