Nanosecond and picosecond absorption and emission spectroscopic techniques were applied to the investigation of the reactivity from the lowest excited states of some 6-fluoro-7-piperazino-4-quinolone-3-carboxylic acids (FQs) in aqueous media at neutral pH, in the absence and presence of different sodium salts. Following the detection of various transients, we proposed a mechanism for the cleavage of the carbonÀfluorine bond that proceeded through different reaction pathways, dependent on the molecular structure and the characteristics of the medium. The drug lomefloxacin (LOM), a 6,8-difluoroquinolone derivative, underwent heterolytic cleavage of the C8ÀF bond from the excited singlet state. With the 6-monofluoroquinolone norfloxacin (NOR) and the corresponding 1,8-naphthyridinone enoxacin (ENX), the lowest singlet state was not significantly reactive and an important deactivation channel was intersystem crossing (ISC) to the triplet manifold. The lowest triplet state underwent cleavage of the C6ÀF bond through a solvent mediated process possibly via a cyclohexadienyl anionic adduct. In the presence of sulfite or phosphate buffer a novel defluorination mechanism, induced by electron transfer from the inorganic anions to the FQ triplet state, was observed. The correlation between the transients observed and the final photoproducts in the different media was elucidated.