The recent advances in the photorefraction of doped lithium niobate crystals are reviewed. Materials have always been the main obstacle for commercial applications of photorefractive holographic storage. Though iron-doped LiNbO3 is the mainstay of holographic data storage efforts, several shortcomings, especially the low response speed, impede it from becoming a commercial recording medium. This paper reviews the photorefractive characteristics of different dopants, especially tetravalent ions, doped and co-doped LiNbO3 crystals, including Hf, Zr and Sn monodoped LiNbO3, Hf and Fe, Zr and Fe doubly doped LiNbO3, Zr, Fe and Mn, Zr, Cu and Ce triply doped LiNbO3, Ru doped LiNbO3, and V and Mo monodoped LiNbO3. Among them, Zr, Fe and Mn triply doped LiNbO3 shows excellent nonvolatile holographic storage properties, and V and Mo monodoped LiNbO3 has fast response and multi-wavelength storage characteristics.