ObjectivesQuantify impaired respiration in currently marketed crib bumpers (CBs), mesh liners (MLs) and alternative products (ALTs) used to attenuate the interaction between the baby and the crib sides and elucidate the relationship between impaired respiration and permeability.MethodsWe experimentally quantified carbon dioxide rebreathing (CO2RB) via an infant manikin and air permeability via previously published test protocols, in commercially available CBs, MLs and ALTs.ResultsDifferences in CO2RB in ML (median [m]=8.2%, 25th percentile [P25]=6.8, 75th percentile [P75]=8.6), ALT (m=10.5%, P25=9.8, P75=10.7) and CB (m=11.6%, P25=10.2, P75=14.3) were significant (p<0.0001). For comparison, manikin tests with a pacifier yielded CO2RB of 5.6%–5.9%, blanket draped over the face/torso yielded CO2RB of 7.7%–8.6% and stuffed animal in various positions yielded CO2RB from 6.1% to 16.1%. Differences in permeability between ML (m=529.5 cubic feet per minute [CFM], P25=460, P75=747.5), ALT (m=29.0 CFM, P25=27.7, P75=37.7) and CB (m=46.6 CFM, P25=30.1, P75=58.7) groups were significant (p<0.0001). CO2RB was poorly correlated with air permeability (max R2=0.36). In a subset of tests, CB CO2RB increased by 50%–80% with increasing penetration force, whereas the ML CO2RB was nominally unchanged.ConclusionsGovernment agencies and standards organisations are presently considering regulation of bedding including CBs. As paediatricians are consulted in the development of such regulations, our findings that permeability by itself was a poor predictor of CO2RB should be considered.