“…Due to that interest, in very recent years, high energy ball milling has extensively been used to study the effect on the particle size, crystallite size, and lattice strain in metals, metal oxides, metal alloys, and so forth [32][33][34][35]. Physicochemical properties of ball milled boron particles under two grinding techniques such as dry and wet grinding were investigated by Jung et al [36]. They found that the size distribution, morphology, size reduction rate, and the degree of agglomeration of milled boron particles are affected by milling type as the wet milling process produced boron particles with narrower size distribution, smoother morphology, and less amount of agglomerated particles compared to dry milling process.…”