This work analyses the properties and the magneto-mechanical characteristics of magnetorheological elastomers, a class of smart materials not yet broadly investigated. First, set of several samples of this material was manufactured, each one characterized by a different percentage of ferromagnetic material inside the viscoelastic matrix. The specimens were manufactured in order to create isotropic and anisotropic configurations, respectively, with randomly dispersed ferromagnetic particles or with an aligned distribution, obtained through and external magnetic field. Then, the mechanical behaviour of each sample was analysed by conducting a compression test, both with and without an external magnetic field. Moreover, a three-point bending test was also performed on the same specimens. Stiffness, deformation at maximum stress and specific energy dissipated were calculated based on the experimental data. The results were analysed considering the mechanical responses, and an analysis of variance was carried out in order to assess the statistical influence of each variable. The experimental results highlighted a strong correlation between the percentage of ferromagnetic material in each sample and its mechanical behaviour. The anisotropicity of the material, aligned in columnar structures, also affects the stiffness measured in the compression test, while the external magnetic field’s main contribution is to reduce the samples’ maximum deformation. Using analysis of variance results as guidelines, we built a simple phenomenological model which produces quite reliable predictions regarding the mechanical response of the magnetorheological elastomers under compressive stress.