Cavitation bubbles commonly exist in shipbuilding engineering, ocean engineering, mechanical engineering, chemical industry, and aerospace. Asymmetric deformation of the bubble occurs near the boundary and then has strong destructiveness, such as high amplitude loading. Therefore, the research on non-spherical deformation is of great significance, and the objective of this paper is to investigate the non-spherical collapse dynamics of laser-induced cavitation bubbles when near different boundaries. In this study, experimental data, such as the bubble pulsation process and bubble surface velocity distribution, were obtained by high-speed camera techniques and full-field velocity calculations. Near the different boundaries, the results show that the bubbles appeared to have different collapse shapes, such as near-hemispherical, near-ellipsoidal, near-cone, and near-pea shapes, and the surface velocity distribution is extremely non-uniform. When the bubble near the free surface or rigid boundary collapses, the smaller the stand-off r is, the more obvious the repulsive effect of the free surface or the attractive effect of the rigid boundary is. As the stand-off r decreases, the larger the Bjerknes force and the bubble surface velocity difference and the more pronounced the non-spherical shape becomes.