Hepatocellular carcinoma (HCC) is one of the most malignant tumors with the highest incidence and mortality in the world, causing a serious burden on society. Pyruvate kinase M2 (PKM2) is one of the principal metabolic enzymes involved in glycolysis. Studies have shown that PKM2 is highly expressed in HCC and can be translocated to the nucleus, where it interacts with various transcription factors and proteins such as hypoxia-inducible factor-1α, sterol regulatory element-binding protein 1a, signal transducer and activator of transcription 3, nuclear factor erythroid 2-like 2 and histone H3, exerting non-metabolic enzyme functions to regulate the cell cycle, proliferation, apoptosis, immune escape, migration, and invasion, as well as HCC angiogenesis and tumor microenvironment. This review is focused on the recent progress of PKM2 interacting with various transcription factors and proteins affecting the onset and development of HCC, as well as natural drugs and noncoding RNA impacting diverse biological functions of liver cancer cells by regulating PKM2 non-metabolic enzyme functions, thereby providing valuable directions for the prognosis improvement and molecular targeted therapy of HCC in the future.