Inclement weather acutely affects road surface and driving conditions and can negatively impact traffic mobility and safety. Highway authorities have long been using road weather information systems (RWISs) to mitigate the risk of adverse weather on traffic. The data gathered, processed, and disseminated by such systems can improve both the safety of the traveling public as well as the effectiveness of winter road maintenance operations. As the road authorities continue to invest in expanding their existing RWIS networks, there is a growing need to determine the optimal deployment strategies for RWISs. To meet such demand, this study presents an innovative geostatistical approach to quantitatively analyze the spatiotemporal variations of the road weather and surface conditions. With help of constructed semivariograms, this study quantifies and examines both the spatial and temporal coverage of RWIS data. A case study of Alberta, which is one of the leaders in Canada in the use of RWISs, was conducted to indicate the reliability and applicability of the method proposed herein. The findings of this research offer insight for constructing a detailed spatiotemporal RWIS database to manage and deploy different types of RWISs, optimize winter road maintenance resources, and provide timely information on inclement road weather conditions for the traveling public.