2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC) 2016
DOI: 10.1109/icnsc.2016.7479024
|View full text |Cite
|
Sign up to set email alerts
|

Plant identification using new geometric features with standard data mining methods

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 12 publications
0
4
0
1
Order By: Relevance
“…Speckle noise frequently occurres at the time of the ultrasonography acquisition [23]. Several ultrasound images contain labels and markers by the radiologists.…”
Section: Results and Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…Speckle noise frequently occurres at the time of the ultrasonography acquisition [23]. Several ultrasound images contain labels and markers by the radiologists.…”
Section: Results and Analysismentioning
confidence: 99%
“…Both filters can remove markers and Rectangular RoI with breast nodules to be analysed is manually selected by the radiologists. Speckle noise frequently occurresat the time of the ultrasonography acquisition [23]. Several ultrasound images contain labels and markers by the radiologists.…”
Section: Results and Analysismentioning
confidence: 99%
“…Оценка параметров растений на основе двумерных изображений многократно производилась различными исследовательскими коллективами, например [3][4][5]. При этом измерения параметров производятся в плоскости изображения в пикселях, которые далее преобразуются в метрическую систему измерения.…”
Section: анализ методов построения моделей растенийunclassified
“…There are also some works where generic image descriptors such as SIFT [15], GIST [16] and HOG [17] are utilized for leaf description and classification. And fused description methods based on multi-feature are studied for leaf descriptions [18]. A very recent survey on of feature extraction techniques for plant leaf recognition is shown in [19].…”
Section: Introductionmentioning
confidence: 99%