Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.