Asthma is an inflammatory chronic disease characterized by airway obstructions disorders. The treatment is usually done by inhalation therapy, in which pressurized metered-dose inhalers (pMDIs) are a preferred device. The objective of this paper is to characterize and simulate a pMDI spray plume by introducing realistic factors through a computational fluid dynamics (CFD) study. Numerical simulations were performed with Fluent® software, by using a three-dimensional "testbox" for room environment representation. An HFA-134a with salbutamol formulation was used for characterization, whose were taken as input for the CFD simulations. Spray droplets were considered to be composed by ethanol, salbutamol and HFA-134a. Propellant evaporation was taken into consideration, as well as, drag coefficient correction. Results showed an air temperature drop of 3.3 °C near the nozzle. Also, an increase in air velocity of 3.27 m/s was noticed. The CFD results seem to be in good agreement with Dunbar (1997) data on particle average velocity along the axial distance from the nozzle.