Asthma is a widespread disease, affecting more than 300 million individuals. The treatment in children is based upon an administration of a pressurised metered-dose inhaler added with a spacer. The efficiency of drug delivery to the patient is strongly affected by the transient airflow pattern inside the spacer device. This paper presents a computational fluid dynamics (CFD) analysis of airflow inside a commercially available spacer device with wide application. This study, carried out in Fluent™, was the basis of an optimisation procedure developed to improve the geometry of the spacer and develop a more efficient product. The results show that an appropriate control of the boundary layer development, by changing the spacer shape, reduces the length of the recirculation zones and improves the flow. It can be concluded that CFD is a powerful technique that can be successfully applied to optimise the geometry of such medical devices.
Asthma is an inflammatory chronic disease characterized by airway obstructions disorders. The treatment is usually done by inhalation therapy, in which pressurized metered-dose inhalers (pMDIs) are a preferred device. The objective of this paper is to characterize and simulate a pMDI spray plume by introducing realistic factors through a computational fluid dynamics (CFD) study. Numerical simulations were performed with Fluent® software, by using a three-dimensional "testbox" for room environment representation. An HFA-134a with salbutamol formulation was used for characterization, whose were taken as input for the CFD simulations. Spray droplets were considered to be composed by ethanol, salbutamol and HFA-134a. Propellant evaporation was taken into consideration, as well as, drag coefficient correction. Results showed an air temperature drop of 3.3 °C near the nozzle. Also, an increase in air velocity of 3.27 m/s was noticed. The CFD results seem to be in good agreement with Dunbar (1997) data on particle average velocity along the axial distance from the nozzle.
The clothing used by both classes, as well as the ventilation conditions, should be revised accordingly to the amount of persons in the room and the type of activity performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.