Injection of shrimp with non-specific double-stranded RNA (dsRNA) of diverse lengths, sequences, and base compositions is known to induce non-specific immunity and protect against lethal disease, although the mechanisms are unclear. Previous shrimp studies examined the effects of non-specific RNA on particular pathways, while their global effects have not been examined. To understand the global effects of non-specific RNA in shrimp, we injected kuruma shrimp (Marsupenaeus japonicus) with a dsRNA and a small interfering RNA (siRNA) that is not specific to any gene in the shrimp genome and then examined global gene expression at 24 and 48 h with a microarray. For the non-specific RNA, we chose double-stranded green fluorescent protein (dsGFP) and siGFP because they are commonly used as mock controls and their effects on shrimp have not yet been studied. Injection of PBS was used as a control. The microarray results showed that many genes were up-regulated and some were down-regulated by dsGFP. In addition, dsGFP injection increased survival following WSSV challenge. The changes in expression for several genes were confirmed by quantitative PCR. The up-regulated genes included genes for eight immune-related proteins: c-type lectin 2, hemocyte homeostasis-associated protein, viral responsive protein, fibrinogen-related protein 1, sid-1 like protein, argonaute 2, Dicer 2, and heat shock protein 90. These results show that injection of shrimp with non-specific dsRNA hinders viral accumulation and prevents significant mortalities.